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Abstract—The transfer of load across a frictional interface between elastic solids is investigated.
We formulate a model two-dimensional problem in which a fiber is extracted from. or pressed into.
a half-plane to which it is connected via Coulomb friction. With a continuous distribution of
dislocations to represent the slip. this problem can be reduced to solving a singular integral equation.
Results of interest are the extent of the slip zone, the transfer of load from the fiber to the matrix.
and the amount by which the fiber is extracted or depressed. all of which depend on the load in a
non-lincar fashion. Attention is focused on contrasting the results of the present analysis with
approximate treatments generally incorporated into micro-mechanical models of composite
matertals.

INTRODUCTION

Theories for the strength and toughness of fiber-reinforced composites have, for the most
part, been based on rather simple assumptions regarding the way in which load is transferred
between the tiber and the matrix, These theories (Kelly, 1970 ; Aveston et al., 1971) typically
assume that a constant shear stress acts at the fiber-matrix interface. This shear stress is
often interpreted as the flow stress of the matrix or as the friction stress at the interface.
Isolating the fiber and applying equilibrium then {cads one to conclude that the average
fiber stress varies lincarly with distance along the fiber, the variation being proportional to
the shear stress. Clearly, this means of analyzing load transfer is highly approximate ; there
is no accounting of compatibility or of the materials’ constitutive behaviors, and there is
only a global accounting of the equilibrium of one portion of the fiber. Actually, the shear
stress at the tnterface is expected to equal the friction stress only over some portion of the
fiber, and after that point it ought to decrease steadily with distance along the fiber.
Morcover, as discussed below, the friction stress may not even be constant from point to
point {(as is usually assumed), but may depend on the normal stress. Nevertheless, this
simple analysis of the distribution of fiber load constitutes an essential ingredient in most
commonly used models for composite strength and toughness.

This paper is devoted to exploring the usefulness of this approximate method by
comparing its predictions with the results of a more rigorous analysis. For this purpose, we
contemplate a composite in which the fiber and the matrix are not bonded. and in which
frictional slip can occur at their interfuce. Such interface conditions appear to prevail in
composites of relatively brittle constituents, as exemplified by ceramic-matrix composites
(Prewo and Brennan, 1980). Whether this interaction at the interface is caused by friction
as it is usually thought of, or by mechanical keying or interlocking, it is plausible that the
maximum shear stress that the interface can sustain increases with the prevailing normal
pressure. In order to account for such a dependence in a simple fashion, we will consider
the transfer of load across an interface which is described by Coulomb friction.

The simple load transfer analysis mentioned above is used, in particular, to describe
the stresses near a fiber end, near a fiber break, or ncar a matrix crack. Morc generally,
load transfer via shear stresses occurs whenever there is an interruption of the isostrain
state which exists parallel to the fibers in a unidirectional, continuous fiber composite. To
judge the accuracy of the simple. constant shear stress analysis described above. we consider
a problem which exhibits this type of load transfer, and which is amenable to mathematical
analysis. Specifically, we treat the problem of a two-dimensional pullout test. in which
conditions at the fiber-matrix interface are those of Coulomb friction. Besides resembling
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other load transfer processes which occur in loaded fiber composites, this configuration, or
rather its three-dimensional generalization, is of interest in its own right. Pullout tests are
a common means of assessing interface strength and micro-indentation tests (pressing on
the fiber instedd of pulling it out) have recently been suggested (Marshall, 1984) as a means
of deducing the friction stress in ceramic—-matrix composites. The two-dimensional pullout
test addressed here has been studied previously (Steif and Hoysan, 1986) as a means of
gauging the effect of an elastic interface on load transfer.

ANALYSIS

The model pullout test is shown schematically in Fig. 1. The half-plane occupying the
region v < 0 is composed of three homogeneous, isotropic, elastic regions, — 0 < x < —a,
—a< x<a. and a < x < o, all of which possess identical elastic constants G and v.
Interface conditions along x = +a are described by a pointwise Coulomb friction law.
According to this friction law, at any instant in the loading history, either sticking, slipping,
or opening occurs at a generic point along the interface. Conditions for these three states
along x = a are as follows:

stick condition

dyg dh
o <0, |[t] <uylol, 87—0. h—.a;-O (la)
slip condition
dg dh
<0, |t] =ula], sgn (ai>—sgn (1), h—H;—O (1b)
open condition
c=1=0, h>0 (Ic)

with
0 = Oy, T= a,ty

g = lir(r)l’ [t(a+e,py)—v(a—¢,y)]
h= Iir;l* (u(a+e,y) —u(a—e,y)].

In these equations g, and ¢,, denote the usual Cartesian components of stress, u and v
denote the x- and y-components of displacement, respectively, u the friction coefficient
which is assumed to be constant along the interface, and d( )/d¢ the derivative with respect
to a time-like parameter that increases monotonically as loading proceeds. The condition
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Fig. 1. Schematic of two-dimensional pullout test.
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sgn (dg dr) = sgn (1) is the condition of positive energy dissipation which dictates that the
instantaneous increment of slip be in the same direction as the shear stress. Note that we
ignore the distinction between static and kinetic friction.

To simulate the presence of some pre-existing compression at the interface (possibly
arising from differential thermal strains that occur during processing), a uniform lateral
compression o, = —0y(gy > 0) is imposed on the half-plane. Finally, the half-plane is
subjected to a uniform normal traction p applied along —a < x <a.y =0.

An integral equation governing this problem is now derived in a manner similar to
that used previously (Steif and Hoysan, 1986). The solution to a normally loaded, perfectly
bonded half-plane is superposed with a distribution of edge dislocations along x = +a.
Symmetry requires that the dislocations be equal and opposite along x = a and —a. The
kernel solution one requires is that of a dislocation in an elastic half-plane (Hirth and
Lothe, 1967). This solution can be written succinctly in terms of Muskhelishvili's (1963)
complex stress potentials ¢ and ., which are related to the Cartesian components of stress
and displacement according to

Text0,y =2 +¢) (2a)
Oy — 0y + Ziat_r = 2(5¢" + ‘l”) (Zb)
2G(u+iv) = kp—z¢ —§ (2¢)

where ¢ and ¢ are sectionally holomorphic functions of = = x+iy, G the elastic shear
modulus, x© = 3 —4v in planc strain (v is Poisson’s ratio), ( )’ denotes differentiation with
respect to z, and the overbar denotes complex conjugation.

The solution for the dislocation in the half-planc is

s o?(:—., "‘77:()7); 1,1 (3‘1)

Ty T -
=20 (z=3y)° S—=20

P =

’ 77 ol i @z —Z0)(z+3,) s
o= - R R _ (z0—=Zo)( o) o

B - - L3
2=z (z=z0)? 2=3 (z—3,)" (z—3)°

(3b)

where x is given by

_ G(—ib,+b,)
h (k+Dnm

For an extensive range of loading and material parameters, no opening occurs at the
interfuce, which means that 4, = 0. In this paper we only consider situations in which
b, = 0, although we will point out circumstances in which the zero opening condition is
violated. Thus, only dislocations b, are distributed over the portions of the interface on
which slip occurs. Let the shear stress be written in the form 1 = 1,41, and the normal
stress in the form ¢ = ~0,+0,+ 0, where t, and g, are the stresses due to the normal
loading of the perfectly bonded half-plane, and t, and a4 are the stresses due to the
distributed dislocations. Then, the slip condition, given by t = +pula|, leads to the integral
equation

Tp(é)+J:_ H.(S.mb(n) dn = _00+6p(é)+J; H,(&. mb(m) d'li )

where ¢ = —y/a, and h(n) is the dislocation density b, at vy = —na. The kernels H, and A,
give the shear stress and normal stress, respectively, at x = a,y = —aé due to a unit positive
dislocation at x = a,y = —an and a unit negative dislocation at x = —a,y = —an. The
terms 1, and o, are given by
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. —4p o P
(3) = 7;(5’: _*:4] d‘p(") = TI[

t9: A

= 3=
—tan"'I — | Sa.b
an 5 :_+4] (Ja.b)

Expressions for the kernels H, and H, are given in the Appendix.

The interval [ over which eqn (4) is defined is part of the solution, as is the sign to be
taken for the right-hand side. Provided no opening occurs, eqn (4) describes the frictional
slip resulting from monotonic loading. When unloading takes place. it is necessary to
augment the expressions for t and ¢ to include terms reflecting the residual (locked-in)
stresses arising from previous slip. Then. the dislocation density may be interpreted as
associated with further slip. The irreversibility of the frictional slip makes the solution to
this problem loading-history dependent ; we will solve the problem for the simple history
of monotonic loading and then unloading. The evolution of the slip and the slipping zone
will be discussed below.

Many of the subtleties associated with Coulomb friction at an interface between elastic
solids have been discussed by Dundurs and Comninou (1979, 1981) and Comninou and
Dundurs (1982). In particular, they show that the condition that the friction law be nowhere
violated implics that the stresses remain nonsingular: from this it may be inferred that the
distocation density vanishes at the ends of a slipping zone. The integral equation must then
be supplemented by the consistency condition (Muskhelishvili, 1977), which provides an
additional equation for tinding the unknown length of the shp zone. The integral equation
wits solved numerically using a method developed by Erdogan ¢t af. (1973).

RESULTS AND DISCUSSION

Much insight into the results can be gained by simply considering the distributions of
intertactal shear and normal traction due to the normal loading of the pertectly bonded
half-planc. The distributions of t, and o, arc given in egns (5), and they have been sketched
in Fig. 2 along with ¢, /a,,.

One cun immediately appreciate that the cases of p > 0 (inttial tensile loading) and
p < 0 (@initial compressive loading) are quite different. In both cases, the normal stress and
the shear stress induced by the load p are greatest in magnitude at v = 0. In the case of
applicd tension, the normal stress a,, is tensile at the interface. This tensile stress serves to
diminish the prevailing compressive stress, thereby lessening the frictional resistance most

INTERFACIAL STRESSES
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Fig. 2. Interfacial stresses assoctated with normal loading of perfectly bonded half-planc.
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at 3 = 0 where the shearing stress is greatest. Using eqns (5). one finds that, under an
applied tension, slip begins at y = 0 at a tension of

2nuo,
T 24mu’

p* (6)

When p < 0. the interfacial normal stress o, is compressive. Thus, the farther one goes
into the solid. the less is the frictional resistance u| —oy+0,|: the shear stress decreases
likewise. The precise distributions of t, and ¢, lead to slip initiating at a point 3* inside the
half-plane which is given by

y* = —2au 7

at a pressure

N — o,
T l—ptan~' ()’

p* (8)

The progression of slip is also different as the load is increased. For applied tension,
slip spreads monotonically into the solid. On the other hand, the slip zone spreads in both
dircctions (into the solid and up to the surfuce) in the case of applicd compression. Once
it reaches the surface, the slip zone then spreads monotonically into the solid.

In Fig. 3, the locations of the end points of the slip zone are plotted as a function of
the load p, normalized by a,. For p > 0, the interpretation is straightforward. To interpret
the curves for p < 0, consider, for example, the curve labeled g = 0.7. Slip begins at
v = —1.4a when pla, = —6.71. When plo, = —7.0, slip extends from 3 = —-0.941a to
—1.975a. The slip zone reaches the surface when p/e, = —10.5. Generally speaking, the
results in Fig. 3 are not unexpected ; the extent of slip increases with increasing load and
diminishing friction coctlicient. The curves depicting the slip length for tenston are ended
abruptly at the points shown when the interfacial normal stress becomes zero. Under further
loading the normal stress changes sign, clearly violating the condition o < 0. This indicates
that opening oceurs at the interface when these levels of applied tension are reached. While
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Fig. 3. End points of slip zone as a function of normalized load p/a,.
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the consequences of opening are undoubtedly of interest, they are not pursued further here.
Note that no opening occurs under compressive loading.

Consider now applying the simple analysis described in the Introduction to the two-
dimensional pullout test analyzed here. We assume the slip extends from the surface to the
pointy = — L,,,. The simple analysis involves a constant interfacial shear stress. An obvious
choice for this is the quantity uo,. which would be the friction stress remote from the region
of loading. With this choice. the simple analvsis yields the result

app = _!_' (9)

Note the approximate analysis predicts that the slip length depends on the friction
coefficient only through the nominal friction stress ug,. The form of this approximate
result suggests a different normalization of the results based on the Coulomb friction law.
Accordingly, the slip length is replotted as a function of p/ug, in Fig. 4. The dashed lines
represent the approximate solution, which is independent of . given this normalization,
and which gives identical predictions for tension and compression. Thus. Fig. 4 serves to
highlight the distinction between the simple constant shear stress approximation and the
solution based on a Coulomb friction interface.

Indeed, the two most striking features of the Coulomb friction model are the clear
variation with g, even after the normalization, and the marked distinction between tensile
and compressive loading of the fiber. First. not surprisingly. the slip lengths are much
greater for tension than for compression. More interesting is the difference in the cffect of
changes in g on the slip fength, For fixed {p/pay|, increasing g decreases the slip length
when p < 0, while the slip increases with pwhen p > 0, This is partially explained by noting
that fixing p/ua, means that higher values of g imply higher values of |p|, which give rise
to higher load induced interfacial normal stresses. When p < 0, these augment the pre-
existing compression, but when p > 0, the normal stresses are tensile, thereby diminishing
the friction stress. Additionally, one notices here a trend which will be observed throughout
this study: the results of the approximate analysis approach the results based on the
Coulomb friction interfuce in the limit as g — 0 with ua, held constant.

The explanation for the validity of the approximate analysis in the limit of small
friction cocflicients is straightforward. The results based on the pointwise Coulomb friction
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Fig. 4. End points of slip zonc as a function of normalized load p/um,: - - -, constant shear stress
approximation.
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law differ from the approximate results because the normal stress at the interface is altered
from the value g, by the stresses associated with the loading (o,) and by stresses generated
by dislocations (seen below to be small). The difference between the two theories, therefore,
depends on the level of the stresses associated with loading relative to o,. To lowest order,
the loading required to cause slip depends on ug,, and so do the stresses. On the other
hand. for a fixed value of uc,. 6, must be relatively large if 4 becomes small. Thus. in this
limit, the stresses associated with loading are small compared with ¢,, bringing the two
theories into close agreement.

A significant ingredient in theories for the tensile failure of fiber composites is the rate
at which load is transferred from the fiber to the matrix. or vice versa. Load transfer is
depicted in Fig. 5, where we have plotted Z. the average stress ¢,, across the fiber, normalized
by p, as a function of normalized distance into the composite. The normalized load has
been fixed at [p/uo,| = 10. Curves signifying tensile loading are labeled p > 0:p < 0 denotes
compressive loading. For purposes of comparison, we also exhibit the load transfer as it is
predicted by the highly approximate theory outlined in the Introduction. [n this approximate
theory, a constant shear stress (taken here to be po,) acts at the interface. This implies that
the average fiber stress varies linearly (the dashed line in Fig. 5) from the applied value p
at the surface to a value of 0 at y = — L,,,. given in eqn (9). The dotted line represents load
transfer when the fiber and the matrix are perfectly bonded.

Coansider the range over which 80% of the load is transferred: i.e. 0.2 < Z/p < 1.0.
(Obviously, the approximate solution is completely inaccurate when, say, the final 10% of
the load diffuses out, since it assumes that «ff the load diffuses out over a finite distance.)
As in the case of the slip length, there are marked variations with g and the results for
tensile and compressive loading are different. Coasistent with intuition, the load diffuses
morc slowly in tension (the pre-existing interfacial compression is relicved by the load-
induced normal stress) and more quickly in compression. To show the effect of increasing
load, we depict the load diffusion for p/ua, = —35 (Fig. 6). A comparison of Figs 5 and 6
indicates that the deviations from the approximate solution increase with the toad. This
holds for tension as well, although our solution has not been extended to permit Lurge values
of tensile loading for which opening at the interface occurs.

For practical composites, p/ua, is conceivably of the order of 100-600. Hence, we consider
further the dependence of load diffusion on the magnitude of p tor compression. If the
curves for different values of p/ua, were plotted as before (Fig. 5) as a function of y/g, then

of
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Fig. 5. Load transfer for tensile and compressive loadings (p/uoy = £ 10): - - -, constant shcar stress
approximation ; - - -, perfectly bonded interface.
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Fig. 6. Load transter for compressive loading {p pa, = —35): ---, constant shear stress approxi-

mation; - -, perfectly bonded interface.

there would be a different approximate curve for cach level of load. To compare these
results, we renormalize the distance into the composite by the slip fength, eqn (9), as
calculated by the approximate theory (Fig. 7). Now, for all combinations of parameters,
the load diffusion as predicted by the approximate theory is the dashed line of slope 1.
Consider the curves that are labeled with different values of p/ua, (1 = 0.2). Note that the
curves appear to approach a limiting curve as p/ua, — oo, Also depicted in Fig. 7 are the
curves for gt = 0.6. The results suggest a universal normalization, dependent only on g, of
the load transfer curves for large compressive loads.

We now turn to consider the fiber depression, a quantity which is central to the micro-
indentation test. The slip at the surface ¢(0), normalized by ap(x-+1)/G is plotted as a

0.25
0.50
/8 o715

p/pag)

1.25

l'so A 1 1 "

Fig. 7. Load transfer as a function renormatized distance for compressive loading : ---, constant
shear stress approximation.
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Fig. 8. Ship at the surface for tensile and compressive loadings as a function of renormalized load
piuoy: - --, constant shear stress approximation.

function of the normalized load p/ua, in Fig. 8. Of course, applicd compression causes a
depression, while tension produces an extraction. One can similarly employ the approximate
analysis (constant interfacial shear stress model) to analyze the fiber depression. This is
essentially the analysis used by Marshall (1984) and Marshall and Evans (1985) to modcl
their micro-indentation test. In this analysis, the lincar load transfer gives a lincar vanation
of strain which is integrated along the ship length to give the slip at the surface g,,,. For
plane strain, g,., is given by

app

Sl P (10)
ap(n+1)  6ua,
Equation (10) ts plotted as the dushed lines in Fig. 8.

Though the approximate solution indicates no difference between tension and com-
pression, the solution to the Coulomb friction problem indicates that they are markedly
difTerent. Note the difference between the approximate solution and the actual results for
compression. Both the slopes of the curves and the load at which slip begins vary significantly
with g. A quantitative comparison can be made for, say p/uc, = 500 (a typical value in
Marshall and Evans (1985), assuming their inferred value of the friction stress). The
approximate result is g,,,G/lup(v +1)] = 31.25, while our numerical solution yields
JO)G/lap(x+ 1)) = 16.5 for u = 0.4

In passing, we note a physical interpretation for the extraction when p > 0. When a
matrix crack normal to the loading direction traverses a longitudinally loaded, uni-
directional composite, the shift of load from the matrix to the fiber corresponds to a
tensile load applied 1o the tiber. Thus, the extraction corresponds roughly to the interfacial
slip accompanying a matrix crack. The present results suggest that one exercise caution in
using the approximate solution for the friction dissipation which enters encrgy based criteria
for matrix cracking (Aveston et al.. 1971; Aveston and Kelly, 1973 ; Budiansky ¢f alf.,
1986). In fact, the difference between the approximate solution and the solution based on
i Coulomb friction model is likely to be even greater when allowance is made for the gap
which opens up between the fiber and the matrix.

We turn now to the response of the half-plane to monotonic loading followed by
monotonic unloading. The progression of slip is somewhat more complicated than it was
for loading. and different behaviors upon initial unloading allow one to draw the distinction
between strong friction and weak friction, a distinction discussed previously by Dundurs
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and Comninou (1981). Before presenting numerical results, we first discuss in very general
terms the response to tnitial unfoading.

Consider the case ot loading in compression (p < 0) to some maximum load followed
by an application of a small tension (initial unloading). Let 7, and g, denote the values of
rand ¢ at the maximum load. (As mentioned carlier, these residual stresses must be included
in the left- and right-hand sides of eqn (4) ; then. the dislocation distribution b(n) represents
additional slip occurring after the maximum load has been reached.) Note that t, > 0 and
o, < 0 and. in particular. that 1, = —ue, in —L < v < —L,. where L and L, denote the
end points of the slipped region. {Once slip reaches the surface L, = 0.) Let 7, and o, be the
additional shear and normal stress induced by the tensile unloading.

We now explore conditions under which no additional slippage occurs with unloading,
i.e. conditions under which

T< —ua

where we have assumed that t is still positive and o is suil negative. This equality can be
written as

T+t < —ulo +a)
and rearranged in the form
T g, < — T - 1o,
Since we assumed that no additional stip oceurs, r, and g, are given by eqns (5) which

are pertinent (o the pertectly bonded halt-plane loaded in tension, whenee tr, < 0 and o, > 0.
Now, detine the function f() by

P T(
S =— (n
g,
umplying
rr+“”r < GIU(:) —“] (lz)

The function f(&), shown in Fig. 2, has a minimum value of 2/rat & =
In the region — L < y < — L, 1.+ uo, = 0; hence, inequality (12) reduces to

J()—u>0.

Two ranges of g emerge: u < 2/n, which we term “weak friction™, and g > 2 'z, which we
term “strong friction’. For weak friction, the inequality is satisfied, and our assumption
that —t,/a, can be calculated from eqns (5) is consistent with the fact that no additional
slippage occurs. Note also that 1, < —po, intheranges —w <y < —Land - Ly, <y <0;
this implics that upon initial unloading, slip will also not occur in previously unslipped
regions provided p < 2/n. Once unloading has occurred to a sufficient extent, it is possible
for reverse slip to occur, that is, the tensile unloading begins to draw the fiber back up. This
takes place, of course, only after the sign of the shear stress reverses and becomes negative.
If the maximum initial loading is sufficiently large, reverse slip will occur; for small initial
loadings, complete tensile unloading is accompaniced by no reverse slip. When it does occur,
reverse slip begins slightly below the surface and advances into the solid and up to the
surface, consistent with the Dundurs and Comninou (1981) definition of weak friction. We
return to rcverse slip below.

When u > 2/n, the right-hand side of incquality (12) is ncgative for some range of &.
Thus, depending on how much slip has occurred in loading. inequality (12) may be violated,
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meaning that slip may occur immediately upon unloading. If the slip zone has reached the
surfuce during loading. then such slip will certainly take place. What is interesting is that
initial tensile unloading with strong friction causes the fiber to slip further into the matrix.
This is dictated by the positive dissipation condition that the slip be in the same direction
as the shear stress. which is still positive for sufficiently small unloading. The interpretation
is as follows: unloading with strong friction causes a release of compressive stress at the
interface which is sufficient to balance the decrease in the prevailing shear stress. This
further slip initiates in some zone — L, < » < 0. which then recedes to the surface with
continued unloading. consistent with the Dundurs and Comninou (1981) definition of
strong friction.

The case of initial tensile loading followed by compressive unloading is treated in the
same manner. The result is the inequality

—T+uo. < —o S (D +u]
where 0, < 0 is the normal stress for compressive loading. Note that
~t.+uo, <0

from which it can be concluded that there cannot be continued slip upon initial com-
pressive unloading for any value of g

We turn now to consider whether complete unloading is possible with no reverse slip.
Let there be an initial compressive loading. Since reverse loading would occur when t < 0,
the condition of zero reverse slip is

-1 < —ua.

Upon complete unloading, t, and a, both vanish. This meuns that t =7, and
a = —a,+a, where 1, and a, are the stresses due to slip (associated with the distributed
dislocations) during initial loading. Hence, the condition for no reverse slip is

Td“'[lﬂd+[lﬂu>0. (13)

For sufliciently small initial loading, relatively little slip occurs, implying that 7y and g, are
small, The condition then reduces to o, > 0, which is always satisfied. From the numerical
solution the terms 7, — uo, are found to be negative. Hence, with sufficient initial loading,
reverse slip must occur upon unloading.

Corresponding to initial tensile loading, the zero reverse slip condition is

—Ty— oy t+ua, >0 (14)

and, again, it may be concluded that no reverse slip takes place upon unloading only when
the initial tensile load is small.

The extent of reverse slip upon complete unloading, denoted by L, can be seen in
Fig. 9. The curves for p/o, < 0 refer to unloading from initial compression; p/o, > 0
represents unloading from initial tension. Analogously to initial loadings, there is a range
of maximum compressive loadings for which reverse slip occurs only internally. With
reference to inequality (13), this is because for some range of initial compressive loadings,
1, achieves an algebraic minimum not at 3 = 0 but at some interior point, and the reverse
slip which begins at that point does not rcach the surface. On the other hand, reverse slip
that takes place upon unloading from tension always initiates at the surface. Reverse slip
at the surface is depicted in Fig. 10, where for comparison both loading and unloading
curves are shown. Consider, for example, the curve labeled 1 = 0.5 (p/uo, < 0). When
loading up to p/us, > —13.4, there is no reverse slip. Say the initial loading is to
p'uay, = —35.0 the normalized depression upon initial loading is 0.75 (dashed curve).
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Fig. 10. Slip (dashed curves) and reverse ship (solid curves) at the surfuce for tensile and compressive
loadings as a function of renormalized load p/ua,.

Upon complete unloading, the residual depression is 0.35 (solid curve) ; the amount of
reverse slip is the difference 0.4,

Finally, we derive an approximate expression for the slip length under compressive
loading which is asymptotically valid for L/a — 0. Consider the equilibrium of the section
of the fiber over which slip occurs. The average pressure at y =0 is p; let the average
pressurc at the end of the slip zone be p, (now we are taking p and p, to be positive). This
net force downwards is balanced by distributed shear stresses, i.c.

0 0
(p—padu = f tdy = llf lo] dy (15)
L L
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or

1}
J gady =0

and. thus. the last integral can be neglected in this asymptotic solution. That the numerical

solutions indicate
Q
j Gy d_l' x0
~L

for even moderate values of L/a suggests that this approximate solution is reasonably
accurate for finite values of L/a.
The first integral in eqn (16) is readily evaluated to give

0 ’
S R ey
J\“L *(Tr, d_l = ]AtL [2+tcln ('2;->]

where, again p > 0. Letting ¢(L/a) be defined by

Lin =L
g(L/u) = " 5 Hlan %

one can write eqn (16) in the form

-L

0 0
(p—py)a = uaoL—uf o, d_v——uJ‘ a4 dv. (16)
L

Note that

P = f,,é;_ﬂg,(?,,_ (17)

Neglecting p,/ue, in comparison with L/a, and noting that ¢(L/a) = 2 for L/a — w0, one
sces that eqn (17) reduces to

2
é=L(|——‘~'). (18)
u  uc, n

This result is tabulated in Table 1, along with an extrapolation of the numerical results
based on two values of L/a, both of the order of 10. The asymptotic result, eqn (18), agrees
reasonably well with the numerical results. As observed earlier, the approach that assumed
a constant interfacial shear stress and which led to eqn (9), becomes valid as u— 0.

Table t. Coeflicient ¢ in L/a = ¢(p/ua,) + d from compressive loading

n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Numerical -0.877 -0.811 -0.748 -0.686 -—0.627 -0.5¢9 -—0.510 -0.459 -0411
Asymptotic

result.egn (18)  —0936 —0873 —-0809 —0.745 -0.682 —0.618 —0.554 -0491 -0427
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Furthermore. eqn (18) also suggests that at g = = 2, the slip zone can no longer penetrate

to arbitrary depths, though eqn (8) shows that slip will always initiate at some pressure p.
for all finite values of u. In fact. a careful examination of the numerical results revealed
that the slope of L a vs p uc, decreases steadily with increasing g, apparently approaching
zero near = 1 2. Since such high values of the friction coefficient appear not to be realistic,
this was not pursued further.

CONCLUSIONS

The principal conclusion of this study is that using a constant shear stress model for
a fiber-matrix interface which is actually governed by Coulomb friction may lead to
substantially inaccurate results. This constant shear stress approximation. which underlies
most calculations of composite strength and toughness. neglects differences between tensile
and compressive loads on the fiber. which can be significant. Generally, the constant shear
stress approximation overestimates the amount and extent of slip when the fiber is subjected
to compression, while underestimating these quantities when the fiber is subjected to tension.
Furthermore, it was found that the degree to which the constant shear approximation is in
error increases with the friction cocetlicient and the load. Thus, depending on the actual
value of the friction coctlicient, the approximate calculation used by Marshall and Evans
(1985) to analyze thetr micro-indentation test may be somewhat inaccurate. The approxi-
mate calculation is also likely to overestimate the rate at which the load is shed back to the
matrix in the vicinity of a matrix crack. In fact, when the fiber is subjected to a sutticient
tevel of tensile loading, a gap develops between the fiber and the matrix. This can extend
the length over which the fiber load is enhanced tollowing the development ol & matrix
crack.
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APPENDIX

[Ro(§.m)+ R (E.m)]

.= (k+rn

H, Ry (&.m)

-
- (k+Dn

. 2
Ro(i.m) = 'I-:E

I —(E—=m)3(n—&
AW=C=MIO=0) | o e in) = F (1 +id. = 1 +in)

BED =T G

o E=E-n . L
R:(3.m) = ‘W+Fz(l+lsvl+l'l)—F1(l+ls-—1+1’I)
Fi(z.20) = Im [Q,(z.29)].  Fi(z.20) = Re [Q,(z.20) — Q1 (2. 20)]

o422y =35+ 25— (o =Ty =2 M=+ 3)

Qi(.20) = =)
Uz =INR3y—z0—2)
Q:(z.20) = e

The singular term in #/, is interpreted in the Cauchy principal value sense.



